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Compressible linear stability theory for axisymmetric flows is presented. The theory 
is applied to flow past a cylinder and a sharp cone at  a Mach number of 5 with 
adiabatic wall conditions. The effect of transverse curvature and body divergence is 
studied. It is found that transverse curvature has a stabilizing influence on 
axisymmetric (first and second mode) disturbances while it has a destabilizing 
influence on the asymmetric (oblique first mode) disturbances. The body divergence 
effects are stabilizing for both symmetric and asymmetric disturbances. Comparisons 
made with the results of planar stability theory show that, for a cylinder, curvature 
effects become more pronounced with increasing distance along the cylinder. For a 
sharp cone, these effects become less significant further away from the cone tip since 
the body radius increases faster than the growth of the boundary layer. The effect of 
cone angle on stability is also studied. 

1. Introduction 
Recent theoretical and experimental studies (e.g. Malik 1 9 8 9 ~ ;  Chen, Malik & 

Beckwith 1989) have shown that compressible linear stability (Lees & Lin 1946; Mack 
1969) can be used as a guide for estimation of the location of transition in supersonic 
boundary layers when transition takes place in low-disturbance environments, and 
in the absence of any ‘bypass ’ mechanisms (Morkovin 1969). Therefore, the subject 
of compressible linear stability is not only of fundamental interest in fluid mechanics, 
it is also relevant in the design of many aerodynamic configurations at  supersonic 
and hypersonic speeds. 

The stability of the compressible flat-plate boundary layer has been studied by 
many authors (see e.g. Lees & Reshotko 1962; Mack 1969, 1984; Gapanov 1981). 
There are two important modes of instability present in a compressible flat-plate 
boundary layer. The first mode is an extension to high speeds of the Tollmien- 
Schlichting (TS) instability present in incompressible flows, though for supersonic 
Mach numbers it differs in one aspect in that it is most amplified when oblique. 
This mode represents viscous instability at low Mach numbers, but the inviscid 
nature of the instability begins to dominate when Mach number increases since 
compressible flat-plate boundary-layer profiles contain a generalized inflexion point 
(i.e. d/dy(pdu/dy) = 0 at some point in the boundary layer). This mode may 
be stabilized by wall cooling, suction and favourable pressure gradient. The second 
mode is the result of an inviscid instability which is present owing to a region of 
supersonic mean flow relative to the disturbance phase velocity. In fact, when this 
supersonic relative flow is present, there exist an infinite number of modes in the 
boundary layer. However, the first mode belonging to this family, commonly known 
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as Mack’s second mode, is most relevant, since it is known to have the highest growth 
rate. The second mode becomes important a t  Mach numbers above about 4 and has 
growth rates much higher than the first mode. The existence of both the first and 
second modes was established by the experiments of Kcndall (1975), Demetriades 
(1974) and Stetson et al. (1983). The sccond mode is different in character with 
respect to the first mode; i t  is most amplified when two-dimensional and is 
destabilized with wall cooling (Mack 1969). It was found by Malik (1989a) that this 
mode can be stabilized with wall suction and a favourable pressure gradient. 

Since axisymmetric bodies represent many practical configurations, it is important 
to study the stability of such flows. In  particular, it is of interest to investigate the 
effect of transverse curvature and body divergence on boundary-layer stability. The 
profound effect that curvature (of body and wavefront) can have on the stability of 
three-dimensional incompressible flow was clearly demonstrated by Malik, Wilkinson 
& Orszag (1981) and Malik & Poll (1985). Malik (1984), Mack (1987) and Gasperas 
(1987) used linear theory to  investigate the compressible stability of supersonic flow 
past sharp cones, but they all ignored transverse curvature effects. Gasperas included 
the body divergence effect on the stability analysis and found the effect to be 
stabilizing. However, he only studied the axisymmetric second-mode disturbances. 
Recently, Duck (1990) and Duck & Hall (1989) have studied the inviscid and viscous 
instability of supersonic flow along a cylinder using asymptotic methods. Their work 
on the viscous instability follows from that of Smith (1989) for a flat plate. 

Chen et al. (1989) included both the transverse curvature and body divergence 
effects in their calculations for Mach 3.5 flow past a sharp cone; however, no 
theoretical details were given. The main purpose of their paper was to present 
experimental results on transition in a flat-plate and sharp-cone boundary layer 
performed in a Mach 3.5 low-disturbance tunnel (Beckwith et al. 1983). Their 
experimental results showed that the transition Reynolds number on the flat plate 
was higher than on a cone, which is also what the stability theory calculations 
indicated. The experiment of Chen et al. (1989) thus resolved a longstanding 
controversy regarding transition on flat plates and cones. Earlier, Pate (1971) had 
presented a correlation of transition data for flat plates and cones which indicated 
that the ratio of sharp-cone to flat-plate transition Reynolds number was greater 
than unity, and in particular at Mach 3.5 the ratio was about 2.2. The experiments 
correlated by Pate (1971) were performed in conventional supersonic wind tunnels 
which have turbulent boundary layers on the nozzle walls which radiate noise and 
thus significantly influence the transition Reynolds number, particularly on the 
flat plate. The experiment of Chen et al. (1989) showed that the trend of 
(Ret)cone/(Ret)flat plate is altered when the experiment is performed in the low- 
disturbance tunnel. I n  this experiment, the ratio was 0.8 (as compared to 2.2 in 
Pate’s 1971 work) which is in reasonable agreement with the results of linear stability 
theory. The adverse effect that wind tunnel noise can have on transition Reynolds 
number was earlier demonstrated by the work of Pate & Scheuler (1969). It appears 
that this effect is much stronger for the flat plate than on the sharp cone. In  any case, 
when high noise levels are present the relevance of linear stability theory to the 
transition process is, at best, dubious. However, in low-disturbance environments, 
such as in flight, and in the absence of ‘bypass’ transition (Morkovin 1969) the 
results of linear theory are of some practical significance. 

I n  this paper, we present viscous, compressible linear stability equations for an 
axisymmetric basic flow. Both axisymmetric and non-axisymmetric disturbances are 
considered. The theory is applicable to axisymmetric bodies of arbitrary shape, 
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including blunt bodies and walls with concave curvature, and thus both the TS and 
Gortler instabilities may be investigated. However, in this study we consider bodies 
with sharp leading edges and compute the basic flow using boundary-layer theory. 
The non-similar form of the boundary-layer equations is solved by a marching finite- 
difference method. Linear stability results are then obtained for Mach 5 flow past a 
hollow cylinder and a sharp cone, and the effect of transverse curvature on both the 
first- and second-mode instability is studied. The effect of body divergence is 
investigated by studying the stability of sharp-cone boundary layers with various 
cone angles. In hypersonic flows, the shock wave provides an additional boundary 
condition for the stability problem, as discussed by Petrov (1985) and Cowley & Hall 
(1990). However, the shock wave effect is ignored in this study and is the subject of 
another paper (see Chang, Malik & Hussaini 1990). 

2. Problem formulation 
The equations governing the flow of a viscous compressible ideal gas are 

= -Vp+V.[h(V.u)/]+V.[p(Vu+Vut')], 

aP -+v- (pu) = 0, 
at 

= V . ( ~ V T ) + - + ( U . V ) ~ + @ ,  aP 
at 

P = p S T ,  

where u = (u,v,  w) is the velocity vector, p the density, p the pressure, T the 
temperature, S the gas constant, c p  the specific heat, k the thermal conductivity, p 
the first coefficient of viscosity and h the second coefficient of viscosity. The viscous 
dissipation @ is given as 

We assume that the instantaneous flow field may be decomposed into a mean and a 
fluctuating part. For example, temperature T may be written as 

@ = h(V.u)2+$[Vu+Vutr]2. (2.5) 

T = T + P ,  (2.6) 

where T represents the temperature of steady basic flow and f' is a time-dependent 
perturbation. 

The governing equations for the steady, basic flow may be derived by invoking the 
boundary-layer assumption. Though real gas effects become important at hypersonic 
speeds in atmospheric flight, we consider air to be a perfect gas in this study. Real 
gas effects may be accounted for in a manner discussed by Malik (1989b). 

2.1. Boundary-layer Jlow 
We consider compressible flow past an axisymmetric body of radius ro(x), where x is 
the coordinate along the body while y is normal to it. The body is assumed to be at 
zero angle of attack. Depending upon the value of ro(x) ,  the body may take the form 
of a cylinder, a sharp cone, a blunt cone, or in the limit of r,, + a, a flate plate. 

and B represent the velocity components along the x- and y-directions If 
15-2 
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respectively, then the boundary-layer equations in the presence of a pressure 
gradient are 

a a - (dpa)+- - (#p )  = 0, 
ax a Y  

p c p u - + p ~ p ~ - = 7 -  aT 1 a ( $I%-- .-;) + p  (E)~ - + a -  dp -- - ap 
ax aY 13 aY dz’  (2.9) 

where j = 0 and j = 1 represent two-dimensional and axisymmetric flows re- 
spectively. We note that r is related to  r,, according to  

r (x ,  y) = ro(x) + y cos A,  (2.10) 
where the local value of angle h signifies the slope of the body. For a cylinder, A = 
0 and for a sharp cone A is the cone half-angle. 

The boundary-layer equations (2.7)-(2.9) are singular a t  x = 0. In order to remove 
the singularity, we use Mangler-Levy-Lees transformation (see Probstein & Elliot 
1956; Hayes & Probstein 1959) : 

( 2 . 1 1 ~ )  
(2.11 b )  

where the subscript e represents the value of variables a t  the edge of the boundary 
layer. If we define three parameters F ,  V ,  8 so that 

F = Glue ( 2 . 1 2 ~ )  

(2.12 b )  

6 = TIT, (2.124 

then the governing equations in the transformed (6 ,  T)-space can be represented as 

(2.13) 

(2.14) 

(2.15) 

a a -2 - ~, a4 = (y-l.)W,a,, ( 2 . 1 6 ~ 4 )  2 5 B  a=-2 2c du 
P e  P e  ’ u, d t ’  

where a, = ( 1  +x) 
and x is the transverse curvature parameter 

x = y cos A l r ,  (2.16e) 

while y is the ratio of specific heats and Me and CT represent respectively the Mach 
number and the Prandtl number defined as 

(2.17) 
(2.18) 
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In deriving (2.15), it has been assumed that the specific heat cP is constant. So, the 
air is considered to be a thermally and calorically perfect gas. The viscosity p is 
assumed to be given by the composite relation (as used by Mack 1984) 

- lb s/ft2; T 2 198.6 OR, ( 2 . 1 9 ~ )  

(2.19b) 

The thermal conductivity E may also be prescribed by a similar formula. For the 
results presented in this paper, however, we compute it by assuming a constant 
Prandtl number of 0.7. The effect of variable specific heat and Prandtl number has 
been discussed by Malik (1989 b).  

The advantage of using Mangler-Levy-Lees transformation, in addition to 
removing the singularity at x = 0, is that the boundary-layer thickness remains finite 
in the transformed coordinate 7. The solution of the non-similar boundary-layer 
equations (2.13)-(2.15) is obtained by the second-order finite-difference method of 
Harris & Blanchard (1982) and the resulting profiles are used in the stability analysis. 

For a sharp cone, if transverse curvature is neglected (x = 0), then (2.13)-(2.15) 
simplify to the following similarity equations : 

fi 
1 + 198.6/T 

,% = 2.27 x 

,ii = 8.0539 x lO-"T' lb s/ft2 ; T < 198.6 OR. 

(2.20) 

(2.21) 

(2.22) 

which arc also the governing equations for the boundary-layer flow past a flat plate. 
Since for a sharp cone r,, = x sin A, (2.11 a) reduces to 

d t  = pepe u,(x sin dx ( 2 . 2 3 ~ )  

which yields 6 = $,p, u, sin2 Ax3. (2.23b) 

Thus, (2.11 b)  can be written as 

or 

u- x sin h e 
d, = 1PdY u, x3 sin2 A)% 

( 2 . 2 3 ~ )  

(2.23 d) 

In other words, for identical edge conditions the cone mean flow profiles a t  a location 
x, can be obtained from flat-plate profiles at  another location xp if x, = 3x,. This is 
the main result of Mangler-Stepanov transformation (see Stewartson 1964) and was 
used by Mack (1987) and Gasperas (1987) for computing the basic flow for sharp-cone 
boundary layers. We note that if transverse curvature is neglected for a cylinder, 
then the computed profiles along the cylinder are the same as for a flat plate. 
Equation (2.23d) also indicates that the cone boundary layer will be 4 3  times 
thinner than the flat-plate boundary layer at the same x-location. This implies that, 
relative to that of the flat plate, the sharp-cone boundary layer would support higher 
disturbance frequencies. In  the present study, we solve (2.13)-(2.15) and do not 
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neglect the transverse curvature effect for the basic flow. However, we will also 
comment on the effect of neglecting curvature in the mean flow by solving 

2.2. Linear stability equations 
In  order to derive the stability equations, we non-dimensionalize the governing 
equations by using some constant reference values for density, temperature, 
velocity, viscosity, thermal conductivity, and specific heat. We denote these scales 
to be p e ,  T,, u,, ye ,  k, and cpe.  Pressure is scaled with p,uE while the lengthscale is 
taken to be some reference length 1. The non-dimensional form of the governing 
equations may be written as 

(2.20)-(2.22). 

(2.24) 

-+v.pu aP = 0,  (2.25) 

1 1 
R R = - v p  +-v. [h(V . u )  / I  +-v. [y(Vu+ Vutr)], 

at 

1 (Y - 1 ) 4 @, 
R T - ( y -  1)W, -+(u .V)p  = -[kV2T+Vk.VT]+ 1 [z ] RPr 

YM", P = PT, 

(2.26) 
(2.27) 

where all the variables have been made non-dimensional with their respective scales. 
Other coefficients appearing in (2.24)-(2.27) are the Reynolds number R, and the 
Prandtl number Pr,  which are defined as 

R = Pe u e  t l ye  (2.28) 
Pr = P e C p , / k e .  (2.29) 

The linear stability equations can now be derived by decomposing the flow field 
into a mean and a fluctuation part as in (2.6). Thus we obtain 

1 
R p - + u s  va + a.  V n  +pa. Vii = - V @  + - v . [h(V . a)  /+ X(V . a) /I 

1 
R + - V - @(VE + V P )  + p(Vii+ V P ) ] ,  (2.30) 

[E 1 
-+v.pa+v.pn aP = 0,  (2.31) 
at 

1 pi?p g + ii. v!F + a.  V T  + pcp ii. V T  + PEP ii. V T  = - [ (W!F + &V") 1 R Pr 

1 + (VE. vP+ v f  . V T ) ]  + ( y  - l)We -+ u * Vfi + ii. vp [T - 
(y-  1)*{2X(v.a) ( V .  E)+X(V. ii)"+[(Vii+VP): (va+ V P ) ]  + R  

+$[(Va+Viitlt'): (Vii+VlP)]},  (2.32) 

(2.33) 

where for a boundary layer p = l/p. 
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Let us restrict ourselves to flow past two-dimensional or axisymmetric bodies at 
zero incidence. We use body-fitted orthogonal curvilinear coordinates x, y, z, where x 
is the streamwise coordinate along the body surface, y is the coordinate normal to  the 
surface and z is in the azimuthal direction. Elements of length in this system are h, 
dx, dy and h,dz. Therefore a general element of length is 

ds = [(h, dx), + (dy), + (h, d ~ ) ~ ] ; ,  

and the velocity components in the x-, y- and z-directions are u, v and w respectively. 
We consider the stability of quasi-parallel compressible flow. The ' quasi-parallel 

flow' assumption is the same as used in the Orr-Sommerfeld analysis of the 
incompressible boundary-layer flow (Tollmien 1929). Under this assumption, 

tZ=U(y); a = O ;  T = T ( y ) ;  P = P ( y ) ;  p = p ( y )  (2.34 a)  

and l B = O  (2.34 b) 

because of the two-dimensional or axisymmetric nature of the basic flow. A number 
of terms drop out in (2.30)-(2.33) owing to these assumptions. 

There is no a priori justification for the parallel-flow approximation except a t  high 
Reynolds numbers where, depending upon the disturbance characteristics, i t  may be 
formally valid. At finite Reynolds numbers, the parallel-flow approximation 
introduces an unknown amount of error in the solution. For incompressible Blasius 
flow, Gaster (1974) found that non-parallel effects are small. However, Smith (1989) 
found that for supersonic flows, parallel-flow approximation is very restrictive for TS 
waves, i.e. Me 4 Ri for the approximation to be valid. For low supersonic Mach 
numbers this inequality can be satisfied a t  Reynolds numbers of interest. On the 
other hand, this criterion is violated a t  higher Mach numbers for finite Reynolds 
numbers of practical interest. However, it may be argued that a t  these high Mach 
numbers, the dominant instability is inviscid (both the first and second mode) and 
not the lower branch triple-deck TS type considered by Smith. Non-parallel 
multiple-scale calculations of Gapanov (1981) and El-Hady (1981) for Mach 4.5 flat- 
plate flow showed the effect of boundary-layer growth to  be small. At this Mach 
number, the results of the quasi-parallel and multiple-scale non-parallel stability 
theories are in fair agreement with the experiment of Kendall (1975), both for the 
first and second modes. Therefore, the qualitative nature of the influence of 
curvature on boundary-layer stability can be investigated by using the quasi-parallel 
theory. However, i t  will be important to study the combined effects of curvature and 
non-parallel flow, and we intend to do that in a future paper. 

When the basic flow is parallel, one can assume that the disturbance quantities are 
given by a harmonic wave of the form 

(2.35 a )  

where a and /3 are the wavenumbers and w is the disturbance frequency. For an 
axisymmetric body of radius To, 

p = ne/r,, (2.35 b )  

where n is the mode number for asymmetric disturbances. Substituting (2.34)-(2.35) 
into the linearized equations of motion and state (2.30)-(2.31), and dropping bars 
from the mean flow quantities, we obtain the following system of equations: 
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I ,  a; -pi + ia, 1, mZ1 - c1 T'm,, - I ,  mi, - m13 mZ3 - rn?, zi 

R( U' + Urn,,) 
PT 

1 +[%- 
ia,(cl T' + 1, mZ3 + I ,  m13) - +m,,(2m1,-1,m2,) 

+ [cl{V + ( rn13 + mz3) u' + ia, I ,  Um,, - 1, Umi, - Um,,(m,, + m,,)} 
+ ~ z ~ ~ - ~ ~ , , ~ ~ ~ ~ - ~ a , ~ , ~ , + i ~ , ~ , m , , ~ z i i  = 0, (2.36) 

d26 (ia, + mzl) 1, dzi d6 R dfi c1 Um,, 1, dri; -+ (el T + mi3 + m,,) --- -+ v+ 1, dY dY 4 P  dY 12  dY 

iorO m13 13-m13 m21 '1 c,T'(ia,+rn,,)I,+-- 2RUml, 
P T  

+el  T'(ml,+m,,)Z,}-(m~3+m~,) 6 1 

1 
+ p x ; i 1 3 ]  2; + [ { ia, c1 ty -~ + el( Urn,, I ,  - Um,, m23 -- Um,, m,, 1, 

rup 

(2.37) ipO(cl T z 0 - w L 2 3  '3) 6 = 0, -;a, ~m,,)+c, ~ ~ r n Z l ~ , , J - - c ,  1 ~rn,,m,,]i;+[ 
1, 12 

-+(ia,+m,,)zi+ m,3+m,3-- B+yM:(m,, U-ic,)$- 
dY 

- + C ~ ( U - U ~ , , ) - - + ( C ,  Urn 
dY dY 

m2, U -  ic3 
T [ ]P+i/3,&=0, '1 

(2.38) 

dB 

ORT] A [ic;;"]p 

a2P dzi 

+ Urn;, I ,  + Urn:,] zi + c4{iao( U' - Um,,) + Um,,(rn,, 1, + mZ3 1,)) - ~ v- ___ 
PT 

a~- /3~+ia ,m, l+c lc4{~(v '2+  U2(m~,12 

i ;+( ip ,c4~m,,~,)zi i  = 0, (2.39) k + m;,)) - UU'm,,} + 
d2& dv̂  a4 . -+ iP,ll-+ (cl T + mi3 +mZ3) -+ (ip, mZ1 I,- aopo 1,) zi+ ip,(c, T' + 2 ,  m13 
dY2 dY dY 

fi + (ip, c1 Um,, 1,) i;+ -a; - 1, /?: + ia, mZ1 -mil 

(2.40) 1 -m,,(c,T'+m,,+m,,) & = 0, 

where ( )' = d/dy, 1, = q + Alp and 

1 d2p 
c z = - -  

' - p d T '  p dT2' 
c, = - (aU-o) ,  c4 = 2(y-1)We(T.  c 1 dP 
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The curvature coefficients m13, m,,  and mZ3 are defined as 

1 ah, 1 ah, , m 2 , = - -  mz3 = -- 
1 ah, m13 = - - 

hl aY h, h, ax ’ h2 aY ’ 

and a, = a / h , ,  Po = P/h,.  
In this study, since we only consider flow along a cylinder or a sharp cone, 

streamwise curvature is absent, i.e. m13 = 0 both for the cylinder and the sharp cone. 
Thus, only the parameters m,, and mZ3 need to be prescribed. Among these, m,, is 
related to body divergence due to increase in the body radius and mZ3 represents 
purely transverse curvature effect. However, these two effects are interrelated and 
cannot, in general, be separated as is evident from (2.42) below. Since the radius of 
a cylinder is constant, m21 = 0 while mZ3 can be written as 

where 

(2.41 a) 

(2.41 b) 

For a sharp cone of half-angle A,  both mZ1 and mZ3 are non-zero and are given as 

E mZ3 = - 
1 + E Y ’  

(2.42a) 

(2 .42b)  

where E is given as E = 8 cos h/ro. ( 2 . 4 2 ~ )  

Gasperas (1987), in his analysis of second-mode axisymmetric disturbances used 
mZ3 = 0 and set m2, = /sinA/r,. We note that if all curvature coefficients are set to 
zero, the planar stability equations for a flat plate are recovered. 

Equations (2.36)-(2.40) are to be solved subject to boundary conditions 

(2.43) 
(2.44) 

Equations (2.36)-(2.40) along with the homogeneous boundary conditions 
(2.43)-(2.44) constitute an eigenvalue problem described by the complex dispersion 
relation 

a = a(P, w ) .  (2 .45)  

In the present study we consider spatial stability and assume p and w to be real while 
a is complex. The imaginary part of a represents the disturbance growth rate 
( -ai > 0 implies instability). 

2.3. Solution of the compressible stability problem 
The ‘ quasi-parallel ’ compressible linear stability equations (2.36)-(2.40) may be 
written as a system of equations of the form 

(2.46) 

where # is a five-element vector defined by {i, v”,$, 5?, d}tr while A is a diagonal matrix 
and B and C are 5 x 5 matrices. Both the finite-difference and Chebyshev spectral 
methods for the solution of the above equation have been discussed by Malik (1990). 
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Here we use two different methods for the solution of the eigenvalue problem. First, 
we discretize (2.46) by a staggered finite-difference method and obtain the spatial 
eigenvalue a by using the QR algorithm. We use another method to purify the 
eigenvalues and obtain the eigenfunctions. To this end, we rewrite the second-order 
normal momentum equation as a first-order equation for pressure using the 
continuity equation. Thus, the above linear stability equations (2.46) may be 
transformed into a system of eight first-order equations : 

8 
-- dyi xa,jY,=O; i = 1 , 2  ,..., 8, 
dY j=1 

(2.47) 

where 

with corresponding boundary conditions 

!PI= Y 3 -  - Y 5 = Y,=O; y = o ,  (2.48) 
~ 1 , ~ 3 , ~ 5 , ~ , + 0 ;  Y-tW. (2.49) 

To solve (2.47)-(2.49), we use the compact difference scheme of Malik, Chuang & 
Hussaini (1982) which allows a fourth-order-accurate solution to be obtained on 
arbitrarily stretched grids. Both the eigenvalues and eigenfunctions are obtained by 
a third-order version of the Newton’s method (see Malik 1990). 

Equation (2.49) requires that the disturbance amplitude must be bounded a t  
infinity. This condition may be satisfied in two ways. First. the disturbance 
amplitude can be simply set to  zero at some large y. This works well for first- and 
second-mode ‘subsonic ’ disturbances which decay quite fast. However, supersonic 
modes with c, < 1 - l / M e  cos $r (see (3.4) below for $r) and -a, > 0 appear when these 
Dirichlet boundary conditions are imposed. Alternatively, far-field boundary 
conditions, (2.49), can be imposed by obtaining the asymptotic solution of (2.46) in 
the uniform free stream. This is straightforward when curvature effects are ignored 
since in that case (2.46) reduces to  an equation with constant coefficients. For the 
present case, however (2.46) does not reduce to an cquation with constant coefficients 
owing to  the dependence of mZ1 and mZ3 on y (see (2.42)) and therefore the free-stream 
conditions are derived by using WKBJ approximation with E as the expansion 
parameter. The boundary conditions in this case can be imposed at some location 
outside the boundary layer. The stability results obtained this way agreed with those 
obtained by using zero perturbation conditions a t  a large y for the ‘subsonic’ modes 
referred to above. However, the supersonic modes were damped, a t  Reynolds 
numbers of the calculations, when asymptotic conditions were used. 

3. Results and discussion 
3.1. Flow along a cylinder 

We first present results for flow along a cylinder, which is assumed to be hollow with 
sharp leading edges in order to  avoid the complications introduced by leading-edge 
bluntness as discussed by Reshotko & Khan (1979) and Malik, Spa11 & Chang (1990). 
We choose a Mach number of 5 so that both the first- and second-mode disturbances 
can be studied at finite Reynolds numbers. Other flow parameters are the stagnation 
temperature, T, = 54OoR, and unit Reynolds number, U J V ,  = 106/ft. Adiabatic wall 
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FIGURE 1.  Transverse curvature parameter as a function of Reynolds number for cylinders of 
various radii and edge Mach number of 5. (The cylinder Reynolds number, R, = u,T,/v,). 

temperature conditions are assumed. Four different cylinder radii are considered ; 
0.025, 0.05, 0.1 and 1 f t  which correspond to Reynolds numbers R, (based upon 
cylinder radius) of 2.5 x lo4, 5 x lo4, lo5 and lo6. R, can be used to characterize the 
effect of curvature. The basic flow was computed by solving boundary-layer 
equations (2.13)-(2.15) as discussed in 52.1. In  accordance with (2.16e), we can define 
a curvature parameter xs so that 

xs = 6 cos A/r,, (3.1) 
where 6 is the boundary-layer thickness based upon u/u, = 0.995. We choose 
lengthscale f (see (2.28)) as f = ( vex /ue ) i .  The value of xs for the four cylinders is 
plotted in figure 1 as a function of Reynolds number R = (Re,);. The curvature 
parameter xs is 0(1) for the smallest-radius cylinder, while xs < 1 for the largest 
radius cylinder. So, the curvature effects will be expected to  be negligible in the latter 
case. 

At R = 1414 (Re, = 2 x lo6), the mean velocity and temperature profiles for 
cylinders with ro = 0.025 (xa = 0.8106) and 0.1 ft  (xs = 0.2113) are compared with 
the profiles for a flat-plate boundary layer (xb  = 0) in figure 2(u, b) .  These 
comparisons show that transverse curvature tends to  decrease both the momentum 
and thermal boundary-layer thicknesses. We will note later that this thinning of the 
boundary layer will shift the second-mode instability to higher frequencies. 

It is well known, according to Rayleigh’s point-of-inflexion criterion, that  velocity 
profiles which possess a point of inflexion are inviscidly unstable. Lees & Lin (1946) 
generalized this criterion to  compressible flows. It has been found that the necessary 
and sufficient condition for the existence of a two-dimensional neutral subsonic wave 
(1 - l/Me < c, < 1 + l/Ne) is that a t  some point yi in the boundary layer 

provided that yi > y, where tj is the point at which U = 1 - l/Me. The phase velocity 
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FIGURE 3. Comparison of spatial amplification rate for axisymmetric disturbances (/3 = 0) for a flat 
plate and cylinders with four different radii. Flow conditions are the same as in figure 2 (Me = 5, 
R = 1414, adiabatic wall). 
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of the neutral wave is given as c, = U(yi). The point yi is known as the generalized 
inflexion point. The presence of the generalized inflexion point is also a sufficient 
condition for the existence of amplified waves. A compressible flat-plate (insulated 
wall) boundary layer contains one such inflexion point. By writing the compressible 
Rayleigh equation in cylindrical coordinates, and following the arguments used by 
Lees & Lin (1946), the generalized inflexion-point condition for axisymmetric flows 
can be derived as 

dU 
'-;y( dd3 dy 

G -- p- -m, ,p- -0 .  (3.3) 

The quantity G, for the flat plate (x6 = 0) and cylinders of three different radii is 
plotted in figure 2 ( c ) .  While for the flat plate G, has only one zero within the 
boundary layer, the cylinder boundary layer contains an additional zero near the 
wall. As xs increases, this additional inflexion point moves away from the wall 
towards the outer inflexion point. However, the additional inflexion point remains 
below y = y for the present conditions. The two inflexion points are also known to 
exist in a flat-plate boundary layer with wall cooling and suction. With sufficient wall 
cooling the two inflexion points merge, and the boundary layer is free of them. 
Transverse curvature seems to have an effect on the mean boundary-layer profiles 
similar to that of cooling and suction, as also noted in the context of the boundary- 
layer thickness. It will be interesting to investigate how curvature affects the 
stability of axisymmetric flows. It is known that wall suction can be used to stabilize 
both first and second modes ; however, wall cooling has a rather mixed effect : the first 
mode is stabilized while the second mode is made more unstable. 

The results of stability calculations for R = 1414 are presented in figure 3 for 
axisymmetric disturbances (/3 = 0). The solid line is for a flat plate (xa = 0). The 
curve for xa = 0 shows a sharp peak in the growth rate -ai at a non-dimensional 
frequency of F = (w/R) = 0.000 116, corresponding to the second-mode instability. A 
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FIGURE 4. Same as in figure 3 except for R = 2828. 

second, rather flat peak, with a much lower growth rate, exists a t  P = 0,00005, which 
is in the region of first-mode instability. As the curvature parameter xs is increased 
we note several effects. The first is that the second-mode instability shifts to higher 
frequency. This effect is also found, for example, with wall suction. Both suction and 
transverse curvature tend to decrease the boundary-layer thickness, and since 
second-mode disturbance wavelength scales with boundary-layer thickness, the 
disturbance frequency increases. The second, and more important effect, is that  the 
peak growth rate decreases as xs increases ; the peak growth is decreased by a factor 
of almost 2 when xs is increased from 0 to 0.8. A similar effect was noted in the 
inviscid calculations of Duck (1990). The effect of transverse curvature on the lower, 
broader hump of axisymmetric disturbances in the first-mode region is also 
stabilizing. However, the peak disturbance frequency does not change but, if a t  all, 
shifts to slightly lower frequencies as evident in figure 4. 

Figure 4 contains results for axisymmetric disturbances a t  R = 2828. Owing to an 
increasing boundary-layer thickness, xs increases with Reynolds number (see figure 
1) .  Thus, the stabilizing effect of curvature becomes more pronounced a t  higher 
Reynolds numbers. The peak second-modc growth rate a t  this Reynolds number 
decreases by a factor of 5 when xs is increased from 0 to 1.4. A similar stabilizing 
trend is noted for the first-mode axisymmetric disturbances. The continued presence 
of the curvature effect a t  this higher Reynolds number shows that our results would 
not qualitatively change had non-parallel computations been performed. 

It was noted in the discussion of figure 2(a-c)  that the mean flow changes owing 
to transverse curvature. It may be interesting to see how much of the effect on the 
disturbance growth rate comes from change in the mean flow, and how much by the 
curvature terms in the stability equations. In  order to  study this we computed the 
mean flow for the cylinders, including transverse curvature, but solved the planar 
stability equations (ignoring the curvature effect). A significant effect was noted on 
the second-mode growth rate which indicates that the transverse curvature effect in 
the computation of the mean flow cannot be ignored. 
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FIGURE 6. Distribution of wave angle for the most amplified disturbances computed in figure 5. 

It is well known that first-mode disturbances are more amplified when oblique. It 
is, therefore, of interest to study the effect of transverse curvature on asymmetric 
disturbances. Such calculations are performed for disturbances which are most 
amplified, i.e. they satisfy the condition dai/d/3 = 0. The growth rate curve thus 
generated will envelope the individual growth curves for fixed values of n (see 
(2.353)). The results are presented in figure 5 for a Reynolds number of R = 1414. 
Contrary to the case of the axisymmetric disturbances, we find that asymmetric 
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FIGURE 7. Distribution of phase velocity for the most amplified disturbances computed in 
figure 5. 

disturbances are destabilized by transverse curvature. It may be noted in figure 5 
that the peak growth rate increases by 40-50% when the curvature parameter is 
increased. The band of unstable frequencies also expands when curvature is 
increased. A similar trend was noted a t  a Reynolds number of 2828. 

The disturbance wave angle *, where 

@ = tan-'(p/ol,) (3.4) 

is plotted in figure 6 for the calculation a t  R = 1414. This shows that the first-mode 
instability waves that grow the fastest are inclined a t  relatively large angles with 
respect to the free stream, and that the angles increase with increasing curvature. 
The disturbance phase velocity c, is given in figure 7. The phase velocity increases 
with frequency while the most amplified wave angle decreases with frequency; the 
largest wave angles being around 75-80' at  the lowest frequencies computed here. 
Smith (1989) found that the most amplified wave orientation given by triple-deck 
theory agrees well with Mack's (1969) theory up to low supersonic Mach numbers. 
However, there appears to be a disagreement between the two theories as the Mach 
number is increased. At a Mach number of 5 ,  for example, the most amplified wave 
angle given by the triple-deck theory is about 80°, as opposed to about 60' given by 
Mack's theory (compare figures 5 and 6 for xs = 0). The disagreement may be due to 
the fact that the triple-deck structure is strictly valid for compressible flows near the 
lower branch where the phase velocity (see figure 7)  is low enough so that the critical 
layer may be contained in the lower deck. At low frequencies, i.e. near the lower 
branch, the most amplified wave angle given by Mack's theory corresponds to that 
given by triple deck. It is known that, for incompressible Blasius flow, where both 
neutral branches describe viscous instability, the disturbance structure changes a t  
higher frequencies, and is described by a multiple-deck structure (Bodonyi & Smith 
1981) a t  the upper branch. For compressible Blasius flow a t  large Reynolds numbers, 
the upper-branch instability is of the inviscid Rayleigh type. Since the compressible 
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sharp cones and edge Mach number of 5. 

Rayleigh equation is a limiting form of the full viscous compressible linear equations, 
Mack's theory is capable of making the transition from TS instability at the lower 
branch (which triple deck describes) to Rayleigh instability at  the upper branch. The 
same cannot be said about the triple-deck approach. In  other words, triple-deck 
structure would break down much earlier for the compressible flow relative to the 
incompressible case when disturbance frequency is increased away from the lower 
branch. This is a plausible explanation of the differences at high Mach numbers 
between Mack's theory and Smith's theory, since the former had been experimentally 
validated by Kendall (1975) at Mach 4.5. For a flat plate in a Mach 4.5 stream, 
Kendall (1967) measured the disturbance phase velocity for an artificially generated 
$ = 55' wave. It was found that the phase velocity varied from about 0.7 to 0.9, 
which agrees with the quasi-parallel flow results such as those given in figure 7. 
Obviously, these observed high-phase-velocity disturbances, associated with the 
generalized inflexion point inviscid criterion, cannot be fitted in the lower deck of a 
triple-deck framework. It is only at  lower Mach numbers, where viscous effects are 
much more important, that the results of Mack's theory and Smith's triple-deck 
theory would agree. 

3.2. Flow past a sharp cone 
We now investigate the stability of a more practical configuration ; that of a sharp 
cone. The sharp-cone flow, in addition to having transverse curvature, also has a 
body divergence effect signified by the term d(lnr,)/dx in ( 2 . 4 2 ~ ) .  We consider 
various cone angles and use a boundary-layer edge Mach number of 5,  and the same 
wind tunnel temperature conditions as used for the cylinder. Though various cone 
angles imply that free-stream Mach number changes, it is sensible to fix the 
boundary-layer-edge Mach number in order to investigate curvature effects. 

Here, three different cone half-angles (2", 5", 10') are considered. The curvature 
parameter xa for the three cones is plotted in figure 8. Since the cone radius increases 
faster than the boundary-layer thickness, the curvature parameter decreases both 
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FIGURE 9. Comparison of spatial amplification rate for axisymmetric disturbances (B = 0) for 2 O ,  

5' and 10" sharp cones a t  R = 1000. All three cones have the same edge Mach number and same 
unit Reynolds number. 
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FIGURE 10. Comparison of spatial amplification rate for asymmetric (oblique first mode) 
disturbances for 2", 5" and 10" sharp cones a t  R = 1000. Most-amplified disturbances (da,/dp = 0) 
are computed. 

with increasing Reynolds number, and with increasing cone angle. Accordingly, the 
effect of transverse curvature will decrease with increasing Reynolds number (it 
increased for a constant-radius cylinder owing to the thickening boundary layer) and 
with increasing cone angle. 
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FIGURE 11.  Comparison of first- and second-mode growth rates with the results of planar stability 
theory : (a )  2" cone, ( b )  10" cone. -, Present theory ; ---- , planar stability theory. 

The stability results are presented at a Reynolds numbers of 1000 in figure 9, 
which shows the growth rates for axisymmetric disturbances for cone angles of 2 O ,  5" 
and 10" at a Reynolds number of 1000. The peak second-mode growth rate decreases 
as the cone angle decreases owing to the increasing effect of transverse curvature, as 
noted in the discussion of results presented for cylinders. Additional calculations for 
axisymmetric disturbances at  R = 2828 showed an effect similar to that noted in 
figure 9, although the stabilization with decreasing cone angle lessened for the higher 
Reynolds number. This is due to the decrease in xs with Reynolds number for a sharp 
cone. It should be pointed out that we have performed the above calculations for the 
three cones by fixing the boundary-layer-edge Mach number. However, if the free- 
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stream (ahead of the shock) Mach number is fixed, the corresponding boundary- 
layer-edge Mach numbers will be different for different cones (approximately 4.9 for 
2" cone and 4.3 for 10" cone in a Mach 5 free stream). 

We now consider asymmetric disturbances at R = 1000. The corresponding results 
are presented in figure 10. Since decreasing the cone angle implies higher transverse 
curvature, the peak growth rate increases when the cone angle is decreased owing to 
the destabilizing influence of transverse curvature on the asymmetric disturbances. 
The growth rates obtained by using the present theory are compared with the results 
of the planar stability equations in figure 1 1  for 2" and 10" cones. For the first oblique 
mode, the growth rates of the planar stability theory are higher for the 10" cone, and 
slightly lower for the 2" cone, and this may be attributed to the competing effects of 
transverse curvature and body divergence. With respect to the results obtained by 
using the planar stability equations, the effect of transverse curvature is 
destabilizing, and the effect of body divergence is stabilizing. The combined effect 
depends upon the cone angle and may be stabilizing or destabilizing. The second- 
mode growth rates, using the present theory, are always lower than the planar 
stability results since both the transverse curvature and body divergence exert a 
stabilizing influence. In  any case, the effect diminishes with Reynolds number. 

4. Conclusions 
We have studied linear stability of supersonic flow past a series of cylinders and 

sharp cones with various nose angles in order to delineate the effwts of transverse 
curvature and body divergence. We find that transverse curvature helps to stabilize 
axisymmetric first- and second-mode disturbances while it makes asymmetric 
disturbances (oblique first-mode waves) more unstable. These effects progressively 
become pronounced when the curvature parameter x6 (see (3.1)) is increased to O(1) 
values and the results of planar stability theory are recovered when xs --f 0. We note 
that for some intermediate values of Mach number, the dominant instability could 
shift from the second mode to the first mode because curvature has a stabilizing and 
destabilizing effect, respectively, on these modes. A similar shift from first to second 
mode takes place owing to wall cooling which stabilizes the first mode and 
destabilizes the second mode. 

The results obtained for sharp cones show that transverse curvature cffccts are 
important near the nose (small Reynolds numbers) with small nose angles, and the 
effect gradually disappears with increasing Reynolds number or increasing cone 
angle. On the other hand, the body divergence effect increases with increasing cone 
angle and is stabilizing for both the axisymmetric and asymmetric disturbances. It 
is hoped that using the present theory for axisymmetric flows will resolve some of the 
discrepancies between the sharp-cone experiments and the planar stability theory 
results. However, it should be pointed out that we have used the quasi-parallel 
approximation in this study, and it remains to be seen whether the qualitative nature 
of the effect of curvature will change when this approximation is relaxed. 

This work was partly sponsored by NASA Langley Research Center under 
Contract NAS1- 18240. 
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